On periodic solution of a nonlinear beam equation
نویسندگان
چکیده
منابع مشابه
Periodic solution for a delay nonlinear population equation with feedback control and periodic external source
In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides the extension of some previous results obtained in other studies. We give a illustrative e...
متن کاملperiodic solution for a delay nonlinear population equation with feedback control and periodic external source
in this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. nonlinear system affected by an periodic external source is studied. existence of a control variable provides the extension of some previous results obtained in other studies. we give a illustrative e...
متن کاملGlobal Solution for the Nonlinear Beam Equation
We prove the existence and uniqueness of global solution for the nonlinear beam equation with initial boundary condition: Q in x f u g t u u M u u ) ( ) ( ) ( ) ( 2 2 2 = ′ + Δ ∇ − Δ + ′ ′ φ α where tt u t x u = ′ ′ ) , ( , t u t x u = ′ ) , ( , 0 > α , φ , , g M is nonlinear functions and Δ is Laplacian in n R .
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملA modified homotopy perturbation method to periodic solution of a coupled integrable dispersionless equation
In this paper, a reliable approach is introduced to approximate periodic solutions of a system of coupled integrable dispersionless. The system is firstly, transformed into an ordinary differential equation by wave transformation. The solution of ODE is obtained by the homotopy perturbation method. To show the periodic behavior of the solution, a modification based on the Laplace transforms and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1983
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1983.104011